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1 Introduction

In order to connect string theory with experimental data we need to develop techniques that

allow us to compute the low-energy four-dimensional effective action that can be directly

compared with what we observe in high energy experiments, starting from the original ten

dimensional theory compactified on R3,1 × M6, where M6 is a compact six dimensional

manifold. In particular, it is important to understand how the four-dimensional physics

depends on the size and the shape of M6.

Recently, in the framework of toroidal compactifications with a number of stacks of

intersecting or of their T-dual magnetized D branes, semi-realistic string extensions of

the Standard Model and of the Minimal Supersymmetric Standard Model have been con-

structed.1 In the magnetized brane scenario quarks and leptons correspond to open strings

having their end-points attached to D branes with different magnetizations. Those open

strings are called in the literature dycharged, chiral or twisted strings. Since in the case of

a constant magnetization the dynamics of the open strings can be completely and analyti-

cally determined and the open strings can be exactly quantized [2], from the computation

of string amplitudes one can in principle determine the low-energy four-dimensional effec-

tive Lagrangian involving those fermionic chiral strings and their supersymmetric bosonic

1See ref. [1] for a description of some of those models.
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partners. In particular, by computing three and four-point string amplitudes, in refs. [3, 4]

the dependence on the magnetization of the Kähler metrics of the twisted strings has been

determined. On the other hand, using instanton calculus and the holomorphicity of the

superpotential for M6 = T 2 × T 2 × T 2, it has been seen [5–7] that the Kähler metrics of

the twisted strings contain an additional explicit dependence on the moduli and also an

arbitrary factor that up to now has not been possible to fix by an explicit string calculation.

However, if one is not immediately interested in the string corrections to the parameters

of the low-energy four-dimensional effective action, one does not really need to compute

string amplitudes, but one can directly start from the action of N = 1 super Yang-Mills

in ten dimensions with gauge group U(M), that describes the open strings attached to

M D9 branes, perform on it a Kaluza-Klein reduction from ten to four dimensions and

derive the low-energy four-dimensional effective action for the massless excitations. In

particular, by imposing that the background gauge field in the six compact dimensions

and along the Cartan subalgebra of U(M) is non-vanishing and corresponds to a constant

gauge field strength, one gets a field theoretical description of the twisted open strings,

previously defined. This approach pioneered in a beautiful paper by Cremades, Ibáñez and

Marchesano [8] for computing the Yukawa couplings of chiral matter and extended in ref. [9]

to orbifolds of toroidal models and in ref. [10] to some non-toroidal compactifications, is

the one that we are going to use for computing the Kähler metrics of twisted open strings.

In this paper, following the approach of ref. [8], we give a procedure for computing

the Kähler metric of twisted and untwisted scalar fields. In fact, unlike ref. [8], we do not

normalize to 1 the wave-functions in the compact extra-dimensions, but instead we keep

the moduli dependence that naturally comes from the integral over the compact manifold.

In this way we can correctly reproduce the dependence on the moduli of the Kähler metrics

apart from factors involving the magnetizations. In order to get also these factors, we add

a normalization factor for each scalar field and for its supersymmetric fermionic partner

that is then determined by requiring that the Yukawa couplings, that we also compute,

come from a holomorphic super-potential. In this way we reproduce the Kähler metric

of the adjoint scalars, of those of the hypermultiplet and of those of the chiral multiplet

without additional arbitrary factors. It must also be said, however, that this is of course the

minimal way to eliminate non-holomorphic factors in the Yukawa couplings. One could,

in principle, also include additional factors that do not spoil the holomorphicity of the

Yukawa couplings. Finally, there is also the issue of how the four-dimensional complex

field depends on the ten-dimensional fields that will be discussed in the conclusions.

The paper is organized as follows. In section 2 we consider the terms of the ten-

dimensional action that are relevant in our calculations and we perform the Kaluza-Klein

reduction from ten to four dimensions. Using the wave functions in the extra dimensions,

that are computed in appendix B, in section 3 we determine the Kähler metrics of the

various scalar fields apart from a normalization factor for each four-dimensional field. In

section 4 we compute the Yukawa couplings and fix the previous normalization factors by

requiring that the Yukawa couplings come from a holomorphic superpotential. In section 5

we insert those normalization factors in the two-point functions for the various scalar fields

and we determine their Kähler metrics showing that the expression obtained are consistent

– 2 –
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with previous string calculations in the field theory limit. Section 6 is devoted to the

conclusions and to a discussion of the form of the four-dimensional scalar fields in terms of

the original ten-dimensional ones.

Some appendices follow. Appendix A is devoted to a description of the torus T 2

and of the moduli used in supergravity. In appendix B we solve both the bosonic and

fermionic eigenvalue equations for the wave functions in the extra dimensions obtaining

the explicit wave functions. In appendix C we add few details on the calculation of the

Yukawa couplings and finally in appendix D we discuss the four-dimensional supersymme-

try transformations.

2 The KK reduction of the relevant terms of the action

The starting point of our analysis is the low-energy limit of the DBI action describing a set

of M D9 branes, namely supersymmetric N = 1 super Yang-Mills with gauge group U(M):

S =
1

g2

∫

d10XTr

(

− 1

4
FMNF

MN +
i

2
λ̄ΓMDMλ

)

, (2.1)

where g2 = 4πeφ10(2π
√
α′)6 and

FMN = ∇MAN −∇NAM − i[AM , AN ] ; DMλ = ∇Mψ − i[AM , λ] (2.2)

being λ a ten dimensional Weyl-Majorana spinor.

We separate the generators of the gauge group into those, called Ua, that are in the

Cartan subalgebra and those, called eab, outside of it [8, 10]:

(Ua)ij = δaiδaj , (eab)ij = δaiδbj (a 6= b) . (2.3)

The gauge field AM and the gaugino are expanded as

AM = BM +WM = Ba
MUa +W ab

M eab ; λ = χ+ Ψ = χaUa + Ψabeab . (2.4)

Requiring that A†
M = AM implies that Ba

M is real and (W ab
M )∗ = W ba

M . The same is true

for the gaugino and its components χ and Ψ.

By inserting in eq. (2.1) the expansions given in eq. (2.4), we can rewrite the original ac-

tion in terms of the fields B, W , χ and Ψ. Its explicit expression can be found in refs. [8, 10].

We separate the ten-dimensional coordinate XM into a four-dimensional non-compact

coordinate xµ and a six-dimensional compact variable yi and perform a Kaluza-Klein re-

duction of the Lagrangian in eq. (2.1) expanding around the background fields:

Ba
M (xµ, yi) = 〈Ba

M 〉(yi) + δBa
M (xµ, yi) , (2.5)

W ab
M (xµ, yi) = 0 + Φab

M(xµ, yi) (2.6)

where, in order to keep the four-dimensional Lorentz invariance, we allow a non-vanishing

background value 〈Ba
M 〉(yi) only for M = i, i.e. along the compact extra-dimensions. The

presence of different background values along the Cartan subalgebra breaks the original

– 3 –
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U(M) symmetry into (U(1))M . In terms of D branes this corresponds to generate M stacks,

each consisting of one D brane with its own magnetization, different from that of the other

branes, and the fields Φab
M (xµ, yi) for M = i describe twisted open strings with the two

end-points attached respectively to two D branes a and b having different magnetizations.

If some of the background values are equal, then the original gauge group U(M) is broken

into a product of non-abelian subgroups.

In the following we will not rewrite the entire action in terms of the fields introduced

above, but we will only write the relevant terms, namely the quadratic terms involving the

scalar and fermion fields and the trilinear terms involving a scalar and two fermions: we

will derive the Kähler metrics from the former and the Yukawa couplings from the latter.

We will also restrict our considerations to toroidal compactifications.

The quadratic terms for the fields Φab
M (xµ, yi) are the following:

S
(Φ)
2 =

1

2g2

∫

d4x
√

G4

∫

d6y
√

G6Φ
jba
[

Gij

(

DµD
µ + D̃kD̃

k
)

+ 2i〈(FB)ij〉ab
]

Φab
i (2.7)

where

DµΦ
ab
j = ∂µΦ

ab
j − i(Ba

µ −Bb
µ)Φ

ab
j ; D̃iΦ

ab
j = ∂iΦ

ab
j − i

(

〈Ba
i 〉 − 〈Bb

i 〉
)

Φab
j (2.8)

with

< (FB)ij >
ab ≡ (F aB)i j − (F bB)i j (2.9)

where (F aB)ij is the field strength obtained from the background field Ba. Analogously we

can consider the quadratic term for the fields δBa
i (x

µ, yi) obtaining:

S
(δB)
2 =

1

2g2

∫

d4x
√

G4

∫

d6y
√

G6δB
a
i

(

∂j∂
j +DµD

µ
)

δBai (2.10)

where the gauge ∂MδB
aM = 0 has been chosen.

The quadratic term of the fermions Ψab(xµ, yi) is given by:

S
(Ψ)
2 =

i

2g2

∫

d4x
√

G4

∫

d6y
√

G6Ψ̄
ba
(

ΓµDµ + ΓiD̃i

)

Ψab (2.11)

where DµΨ
ab and D̃iΨ

ab are the same as in eq. (2.8).

The trilinear Yukawa couplings are given by:

S
(Φ)
3 =

1

2g2

∫

d4x
√

G4

∫

d6y
√

G6

(

Ψ̄caΓiΦab
i Ψbc − Ψ̄caΓiΦbc

i Ψab
)

(2.12)

and by

S
(δB)
3 =

1

2g2

∫

d4x
√

G4

∫

d6y
√

G6Ψ̄
ab(/δBb − /δBa)Ψba (2.13)

respectively for the twisted scalar Φ and for the untwisted scalar δB.

– 4 –
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The four-dimensional effective action, corresponding to the ten-dimensional actions

given above, is obtained by expanding the ten-dimensional fields as follows:2

Φab
i (X) =

∑

n

ϕabn,i(x
µ)φabn (yi) ; Ψab(X) =

∑

n

ψabn (xµ) ⊗ ηabn (yi) . (2.14)

The spectrum of the Kaluza-Klein states and their wave functions along the compact

directions are obtained by solving the eigenvalue equations for the six-dimensional Laplace

and Dirac operators:

− D̃kD̃
kφabn = m2

nφ
ab
n , iγi(6)D̃iη

ab
n = λn η

ab
n (2.15)

with the correct periodicity conditions along the compactified directions. It is worthwhile

to remind that, according to a standard procedure followed in dimensionally reducing the

ten-dimensional Dirac equation [11], it is necessary to make the operators ΓµDµ and ΓiD̃i

commute in order to properly define simultaneous eigenstates. This is accomplished by

multiplying the latter operators with Γ(5) = iΓ0Γ1Γ2Γ3, which yields to eq. (2.15) after

having used the decomposition:

Γµ = γµ(4) ⊗ I(6) , Γi = γ5
(4) ⊗ γi(6) . (2.16)

Inserting eq. (2.14) and the first equation in (2.15) in eq. (2.7) and using the coordinates

z and z̄ introduced in eq. (A.2) of appendix A for describing the torus T 2, one gets:3

S
(Φ)
2 =

1

2g2

∫

d4x
√

G4

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

×
3
∑

r=1

Φj ba
r

[

Gr ij
(

DµD
µ −m2

n

)

+ 2i
< (Fr)

i
j >

ab

(2πR)2

]

Φab
ri (2.17)

that, more explicitly, can be written as:

S
(Φ)
2 =

1

2g2

∫

d4x
√

G4

∑

n

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

φban φ
ab
n

×
{

3
∑

r=1

N2
ϕr

[

ϕba,znr (x)

[

DµD
µ −m2

n +
4πIr

(2πR)2T (r)
2

]

ϕabnrz(x)

]

+

3
∑

r=1

N2
ϕr

[

ϕba,z̄nr (x)

[

DµD
µ −m2

n −
4πIr

(2πR)2T (r)
2

]

ϕabnrz̄(x)

]}

(2.18)

where we have used eqs. (B.5) and (B.6), in which the first Chern class Ir appears. More-

over, we have introduced a normalization factor Nϕr , that in general will depend on the

moduli. This factor has been fixed in ref. [8] requiring that the quadratic terms are canon-

ically normalized. In this paper we adopt a different procedure and we will fix it later on

by requiring the holomorphicity of the superpotential.

2The wave-function in the extra dimensions can in principle also depend on the index i, but this does

not happen in our case as one can see from eqs. (2.15).
3In this formula the indices i and j run over each of the three torus T 2.

– 5 –
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From eq. (2.18) we see that there are two towers of Kaluza-Klein states for each torus,

with masses given by:

(M±
n,r)

2 = m2
n ±

4πIr

(2πR)2T (r)
2

=
1

(2πR)2

[

3
∑

s=1

2π|Is|
T (s)

2

(2Ns + 1) ± 4πIr

T (r)
2

]

(2.19)

where Ns is an integer given by the oscillator number operator. The presence of the

oscillator number is a consequence of the fact that, as shown in eq. (B.11), the Laplace

operator can be written in terms of the creation and annihilation operators of an harmonic

oscillator. Notice that, since we use a dimensionless T2, the factor 1
(2πR)2

in front is just

there to cancel the dependence of the physical masses on the unphysical parameter R. One

can have a massless state only if the following condition is satisfied for Ir > 0 or Ir < 0:4

3
∑

s=1

2π|Is|
T (s)

2

− 4π|Ir|
T (r)

2

= 0 =⇒ 1

2

3
∑

s=1

|Is|
T (s)

2

− |Ir|
T (r)

2

= 0 . (2.20)

In this case one keeps N = 1 supersymmetry because there is a massless scalar that is in

the same chiral multiplet as a fermion that we will study later. If one of the Ir’s is vanishing

and the other two are equal, then we have an additional massless excitation corresponding

to an extended N = 2 supersymmetry.

It is convenient to use fields ϕI with flat indices:5

ϕabz̄ = Gz̄ze
z
I(ϕ

I)ab ≡
√

T2

2U2
ϕab+ ; (ϕz̄)ba = ez̄I(ϕ

I)ba ≡
√

2U2

T2
(ϕab+ )†

ϕabz = Gzz̄e
z̄
I(ϕ

I)ab ≡
√

T2

2U2
ϕab− ; (ϕz)ba = ezI(ϕ

I)ba ≡
√

2U2

T2
(ϕab− )† (2.21)

where

(ϕ+)ab =

(

ϕ1 + i ϕ2

√
2

)ab

; (ϕ−)ab =

(

ϕ1 − i ϕ2

√
2

)ab

; ϕba+ = (ϕab− )† . (2.22)

The action for the twisted scalars restricted to the lowest modes of the two towers of

Kaluza-Klein states becomes:

S
(Φ0)
2 = − 1

2g2

3
∏

s=1

[

(2πR)2
∫

d2zs
√

G(zs,z̄s)

]

(φab0 )†(φab0 )

∫

d4x
√

G4

3
∑

r=1

N2
ϕr

×
[

(Dµ(ϕ
ab
r,+)†(x))(Dµϕabr,+(x)) + (M+

0,r)
2(ϕabr,+)†(x)ϕabr,+(x)

+ (Dµ(ϕ
ab
r,−)†(x))(Dµϕabr,−(x)) + (M−

0,r)
2(ϕabr,−)†(x)ϕabr,−(x)

]

. (2.23)

The susy conditions given in eq. (2.20) show that only one of the two scalars is massless. In

particular, by choosing in such equation r = 1 and I1 > 0, we see that ϕ1,− is the massless

4This condition is the field theory limit of the relation that one imposes in string theory in the twisted

sector to keep N = 1 supersymmetry.
5We will discuss in the conclusions the reason of this choice.
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scalar. The corresponding internal wave-function has been determined in ref. [8] and is the

product of three eigenfunctions

φab0 =
3
∏

r=1

φab;n
r

r,signIr
(2.24)

where

φab;nr

r,+ = e
πiIrzr

Imzr

ImU(r) Θ

[

2nr

Ir

0

]

(Irzr|IrU (r)) for Ir > 0

φab;nr

r,− = e
iπ|Ir|z̄r

Imz̄r

ImU(r) Θ

[

−2nr

Ir

0

]

(Irz̄r|IrŪ (r)) for Ir < 0 (2.25)

with nr = 0, . . . , |Ir| − 1 labelling the Landau levels. Instead, by taking r = 1 and I1 < 0

we have that ϕ1,+ becomes the massless mode. It is useful to notice that (φab;nr

r,+ )† = φba;nr

r,− ,

and furthermore, the reality of the scalar action implies:

φba0 = (φab0 )∗. (2.26)

In conclusion, by performing the Kaluza-Klein reduction of the low-energy world-volume

action of a stack of D9 branes on R3,1×T 2×T 2×T 2, we have found two towers of Kaluza-

Klein states for each of the scalar fields ϕr,± for r = 1, 2, 3 corresponding to twisted or

dycharged strings. In general, only the lowest state of one of the two towers and for a

particular value of r (say r = 1 if eq. (2.20) is satisfied for r = 1) is massless, depending

on the sign of I1. We have now all the elements for computing the Kähler metric of the

scalars ϕ±. This will be done in section 3.

Next we consider eq. (2.10) for the adjoint scalars and expand the fluctuations as

follows:

δBa
i (x

µ, yi) =
∑

n

Cani(x
µ)can(y

i) . (2.27)

Inserting this expansion in eq. (2.10) and limiting ourselves to the constant zero mode

we get:6

S
(δB)
2 =

1

2g2

∫

d4x
√

G4

3
∏

s=1

[

(2πR)2
∫

d2zs
√

G(zs,z̄s)

] 3
∑

r=1

Cair (x)
(

∂µ∂
µ + ∂j∂

j
)

Cari(x)

that is equal to:

S
(δB)
2 = − 1

2 · 4π e−φ10

3
∏

s=1

T
(s)
2

∫

d4x
√

G4

[

3
∑

r=1

Gijr ∂
µCari(x)∂µC

a
rj(x)

]

(2.28)

where we have taken the constant lowest eigenfunction ca(yi) = 1.

6Also here, as in eq. (2.17), with an abuse of notation, we take the indices i and j running over each of

the three tori. Furthermore we let the subindex 0 drop.

– 7 –
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Using the first metric in eq. (A.3) and going to the Einstein frame, we get the following

final expression:

S
(δB)
2 = −1

2
e−φ10 T

(1)
2 T

(2)
2 T

(3)
2 e2φ4

∫

d4x
√

G4

[

3
∑

r=1

1

T
(r)
2 U

(r)
2

∂µϕ̄ar(x)∂µϕ
a
r(x)

]

(2.29)

where

ϕar ≡ i
Ū C̃ar1 − C̃ar2√

4π
. (2.30)

Here, the fields C̃r’s are the ones defined in the x̃ coordinate system introduced in ap-

pendix A.

We finally consider the kinetic term for the twisted fermions. It is obtained by plugging

in eq. (2.11) the Kaluza-Klein mode expansion given in (2.14), getting:

S
(2)
F =

1

2g2

∑

n,m

∫

d4x
√

G(4)
[

ψ̄ban

(

iγµ(4)Dµ + λnγ
5
(4)

)

ψabm

]

∫

d6y
√

G(6)(ηabn )† ηabm (2.31)

where we have used the identity η̄ba = (ηab)† which follows from the structure of Γ0 given

in eq. (2.16).

3 The Kähler metrics

In this section we continue the calculation previously started for determining the Kähler

metric of the scalars ϕ±. In particular, we pay our attention on the term containing the

massless scalar that we name ϕ. The Kähler metric Z can be read from the kinetic term

for the field ϕ given by:

−
∫

d4x
√

G4 Z(m, m̄) (Dµϕ̄(x))(Dµϕ(x)) (3.1)

written in the Einstein frame. The field ϕ is related to the fields ϕ− by: ϕ = ϕ−√
4π

,7

absorbing in the definition of the field the factor 4π present in g2. m and m̄ stand for the

moduli.

By comparing this equation with eq. (2.23) the following expression for Z can be

obtained:

Z(m, m̄) =
4πe2φ4

2g2
N2
ϕ

3
∏

s=1

[

(2πR)2
∫

d2zs
√

G(zs,z̄s)

]

φba0 φ
ab
0 (3.2)

where the factor e2φ4 has been added in order to go from the string to the Einstein frame.8

Nϕ is a normalization function that we have introduced in the previous section and that

will be determined by requiring that the super-potential is holomorphic.

7We discuss only the case I > 0. The final relations are trivially extended to the case I < 0.
8The relation between the string and Einstein metric is Gstring

µν = e2φ4GEinstein
µν .
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The integral over the six-dimensional compact space has been performed in ref. [8]

with the following result valid both for positive and negative Chern-classes:

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

φba0 φ
ab
0 =

3
∏

r=1

[

(2πR)2T (r)
2

(2|Ir|U (r)
2 )1/2

]

= (2π
√
α′)6

3
∏

r=1





(

T
(r)
2

2U
(r)
2

)1/2(

T
(r)
2

|Ir|

)1/2


 (3.3)

where, in going from the first to the second line, we have used eq. (A.7) and the last

equation in (A.12) connecting the four-dimensional dilaton to the ten-dimensional one.

Inserting eq. (3.3) in eq. (3.2) we get:

Z =
eφ4

2
N2
ϕ

3
∏

r=1





(

1

2U
(r)
2

)1/2(

T
(r)
2

|Ir|

)1/2


 =
N2
ϕ

2s
1/4
2

3
∏

r=1





1

(2u
(r)
2 )1/2(t

(r)
2 )1/4

(

T
(r)
2

|Ir|

)1/2




(3.4)

where the last equation in (A.13) has been used.

The scalars of the hypermultiplet can be obtained by imposing the following conditions:

|I1|
T (1)

2

=
|I2|
T (2)

2

; I3 = 0 . (3.5)

When they are satisfied, it is easy to see that we have two massless excitations corresponding

to the two complex scalars of the hypermultiplet of N = 2 supersymmetry. One gets for

them the following effective action:

− 1

2g2

∫

d4x
√

G4

[

N2
ϕ1

(Dµϕ
ba
1,−(x))(Dµϕab1,+(x)) +N2

ϕ2
(Dµϕ

ba
2,−(x))(Dµϕab2,+(x))

]

×
3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

φba0 φ
ab
0 (3.6)

where now the wave function contains only the Θ-functions corresponding to the first two

tori, while the wave function along the third torus is just a constant. From it, proceeding

as above, we get:

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

φba0 φ
ab
0 = (2π

√
α′)6T (3)

2

2
∏

r=1





(

T
(r)
2

2U
(r)
2

)1/2(

T
(r)
2

|Ir|

)1/2


 . (3.7)

Introducing, as before, the two fields:

ϕ1 =
ϕ1,−√

4π
; ϕ2 =

ϕ2,−√
4π

(3.8)

we can rewrite eq. (3.6) as follows:

−
∫

d4x
√

G4(m, m̄)
[

Zhyper
1 (Dµϕ̄1(x))(D

µϕ1(x)) + Zhyper
2 (Dµϕ̄2(x))(D

µϕ2(x))
]

(3.9)
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where in the Einstein frame one has:

Zhyper
i =

e2φ4

2
e−φ10N2

i

3
∏

r=1

T
(r)
2

2
∏

r=1

1
(

2|Ir|U (r)
2

)1/2

=
N2
i

2
(

4u
(1)
2 u

(2)
2 t

(1)
2 t

(2)
2

)1/2

2
∏

r=1

(

T
(r)
2

|Ir|

)1/2

. (3.10)

The normalization factors will be determined by imposing, as in the case of chiral matter,

the holomorphicity of the superpotential.

We derive also the Kähler metric for the adjoint scalars. It can be obtained by com-

paring eqs. (3.1) and (2.29):

Zr = e2φ4e−φ10
T

(1)
2 T

(2)
2 T

(3)
2

T
(r)
2 U

(r)
2

= eφ4
(T

(1)
2 T

(2)
2 T

(3)
2 )1/2

T
(r)
2 U

(r)
2

=
eφ10

T
(r)
2 U

(r)
2

=
1

t
(r)
2 U

(r)
2

(3.11)

and this expression agrees with eq. (2.20) of ref. [12] obtained from the DBI action.

In the final part of this section we compute the Kähler metric for twisted fermions

which appears in the kinetic term for the fermions as:

i

2

∫

d4xZ(m, m̄)
√

G4ψ̄
ba γµ(4)Dµ ψ

ab . (3.12)

Comparing it with eq. (2.31) we get:

Z =
e2φ4

g2
N2
ψ

∫

d6y
√

G6(η
ab)† ηab =

e2φ4e−φ10

4π
N2
ψ

3
∏

r=1





(

T
(r)
2

|Ir|

)1/2(

T
(r)
2

2U
(r)
2

)1/2




=
eφ4

4π
N2
ψ

3
∏

r=1





(

T
(r)
2

|Ir|

)1/2(

1

2U
(r)
2

)1/2


 (3.13)

where the factor e2φ4 has been added for going to the Einstein frame. Eq. (3.13) gives

the same dependence on the moduli as the eq. (3.4) does, with the only difference due

to a constant normalization factor. This is an expected result which follows from N = 1

supersymmetry, since the fields ϕ and ψ belong to the same chiral multiplet. We also

deduce that Nϕ = Nψ/
√

2π.

In conclusion, with our procedure we have determined how the Kähler metrics explicitly

depend on the moduli apart from that normalization factor that we will determine in the

next section by requiring the holomorphicity of the superpotential.

4 Yukawa couplings

In this section we evaluate the Yukawa couplings both for the chiral multiplet and the

hypermultiplet. In the case of the chiral multiplet, we start from the action in eq. (2.12)
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where the expansions in eq. (2.14) have been inserted:

S
(Φ)
3 =

1

2g2

∫

d4x
√

G4

∫

d6y
√

G6

∑

n,m,l

ψ̄can γ5
(4)

×
[

ϕabi,m ψ
bc
l ⊗ (ηacn )†γi(6)φ

ab
mη

bc
l − ϕbci,m ψ

ab
l ⊗ (ηacn )†γi(6)φ

bc
mη

ab
l

]

. (4.1)

In the following we focus on the term containing the massless scalar relative to the first

torus. This implies that the condition:

|Iab1 |
T

(1)
2

=
|Iab2 |
T

(2)
2

+
|Iab3 |
T

(3)
2

(4.2)

must be satisfied. We are allowed to choose Iab1 being positive and consequently the massless

scalar results to be ϕ1 =
ϕ1,−√

4π
. Furthermore, in order to satisfy the condition

Iabr + Ibcr + Icar = 0 (4.3)

and to have non-zero Yukawa couplings, on the first torus we fix

Ica1 < 0 ; Iab1 > 0 ; Ibc1 < 0 (4.4)

implying that the internal wave function associated with the bosonic zero mode solution is

the first one in eq. (2.25).

In this case, as it is shown in appendix C, one is left with the following expression:

S
(Φ)
3 =

∫

d4x
√

G4ψ̄
ca γ5

(4)ϕ
ab
1 ψbcY s (4.5)

with the Yukawa coupling in the string frame given by:

Y s =
Nab
ϕ1
N ca
ψ N

bc
ψ√

2g2

√
4π

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

×(ηca1,− φ
ab
1,+ η

bc
1,−)(±ηca2,∓ φab2,sign Iab

2
ηbc2,±)(±ηca3,∓ φab3,sign Iab

3
ηbc3,±) (4.6)

where in each of the last two tori we can choose the upper and lower sign independently

from each other. The important point is that Y s results to be non vanishing only when

the chiralities of the two spinors ηca2,3 and ηbc2,3 are opposite, while those of ηca1 and ηbc1 are

equal. As in the case of the Kähler metric we add the three normalization factors for each

of the three four-dimensional fields that we will determine by requiring the holomorphicity

of the superpotential.

The integral on T 2 has been computed in appendix C. It can be generalized, by using

eqs. (C.22)–(C.27), to the case of T 2 × T 2 × T 2 for arbitrary values of the Chern classes

as follows:

Y s =
e−φ10

√
8π

σNϕNψNψ

3
∏

r=1

{

T
(r)
2

(

2U
(r)
2 |Iabr |χab

r |Ibcr |χbc
r |Icar |χca

r

)1/2

×Θ

[

2
(

n′

Ica
r

+ m′

Ibc
r

+ l′

Iab
r

)

0

]

(0| − Iabr I
bc
r I

ca
r U

(r)
f )

}

(4.7)
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with n′ = 0, . . . , |Ica| − 1; m′ = 0, . . . , |Ibc| − 1; l′ = 0, . . . , |Iab| − 1. Moreover χr is defined

in eq. (C.26) and

U
(r)
f =

{

U (r) for sign(IcaIbcIab) < 0

Ū (r) for sign(IcaIbcIab) > 0 .
(4.8)

The previous result agrees with the one in ref. [8] and each of the three Θ-functions in

eq. (4.7) is a holomorphic function of the complex structure of the corresponding torus. It

is worth noticing that, because of eq. (4.8), if sign(Icar I
bc
r I

ab
r ) is not the same for each value

of r = 1, 2, 3, then some of Θ-functions will depend on U , while others will depend on Ū .

Notice that eq. (4.7) is valid not only for the choice in eq. (4.4), but for any arbitrary

choice of the Chern classes. One can rewrite the Yukawa couplings in the Einstein frame

multiplying the equation by e4φ4e−φ4 , where the first factor comes from the rescaling of the

square root of the determinant of the metric and the second from that of the two fermionic

fields. Using the last equation in (A.12) and taking then into account eq. (A.15), we see

that the factors containing φ4 combine together with other factors to give:

Y E =
eK/2√

8π
σNϕNψNψ

3
∏

r=1

{

(T
(r)
2 )1/2

(

2|Iabr |χab
r |Ibcr |χbc

r |Icar |χca
r

)1/2

× Θ

[

2
(

n′

Ica
r

+ m′

Ibc
r

+ l′

Iab
r

)

0

]

(0| − Iabr I
bc
r I

ca
r U

(r)
f )

}

(4.9)

where K is the Kähler potential given in eq. (A.14). With the choice in eqs. (4.2) and (4.4)

the previous equation becomes:

Y E =
eK/2√

8π
σNab

ϕ1
N ca
ψ N

bc
ψ

(T
(1)
2 )1/2

(

2Iab1

)1/2

3
∏

r=2

(T
(r)
2 )1/2

(

2|Ibcr |χbc
r |Icar |χca

r

)1/2

×
3
∏

r=1

Θ

[

2
(

n′

Ica
r

+ m′

Ibc
r

+ l′

Iab
r

)

0

]

(0| − Iabr I
bc
r I

ca
r U

(r)
f ) . (4.10)

Because of the terms depending on the magnetizations, eq. (4.10) is not a holomorphic

function of the moduli unless we choose the normalization factors Nab
ϕ1
, N bc

ψ , N
ca
ψ in such a

way to eliminate such dependence. This is what we are going to explain in the following.

Eq. (4.3) must be satisfied for the three tori. In the first torus we have chosen the I’s

as in eq. (4.4). In the second torus let us choose sign(Iab2 ) = sign(Ibc2 ).9 With these two

choices we get:

Iab1 + Ibc1 + Ica1 = 0 =⇒ |Ibc1 | + |Ica1 | = |Iab1 | =⇒ νab1 = νbc1 + νca1 (4.11)

Iab2 + Ibc2 + Ica2 = 0 =⇒ |Iab2 | + |Ibc2 | = |Ica2 | =⇒ νca2 = νab2 + νbc2 (4.12)

because sign(Ica2 ) = − sign(Ibc2 ), as follows from eq. (4.6). In the last step we have used the

definition:

πνr ≡
|Ir|
T

(r)
2

(4.13)

9If this is not the case, we can repeat what we are going to do, substituting Ibc
2 with Ica

2 without loss of

generality.

– 12 –



J
H
E
P
0
3
(
2
0
0
9
)
0
2
9

where the quantities νr will be shown to have also a precise meaning in the theory of

magnetized branes and strings generating our model at low-energy. Finally, on the third

torus let us choose sign(Iab3 ) = −sign(Ibc3 ). This means that:

Iab3 + Ibc3 + Ica3 = 0 =⇒ |Iab3 | + |Ica3 | = |Ibc3 | =⇒ νbc3 = νab3 + νca3 (4.14)

because sign(Ica3 ) = − sign(Ibc3 ), as follows from eq. (4.6).10

Summing eqs. (4.11), (4.12) and (4.14) we get:

(νab1 − νab2 − νab3 ) − (νbc1 + νbc2 − νbc3 ) + (−νca1 + νca2 − νca3 ) = 0 (4.15)

which is satisfied by taking:

νab1 = νab2 + νab3 ; νbc3 = νbc1 + νbc2 ; νca2 = νca1 + νca3 . (4.16)

Such a configuration preserves N = 1 supersymmetry in all the three sectors ab, bc and ca.

With the previous choices one gets:

χbc2 = χca3 = 0 ; χbc3 = χca2 = 1 . (4.17)

Using these values in eq. (4.10) we see that, if the normalization factors are taken as follows:

Nab
ϕ1

=

(

|Iab1 |
T

(1)
2

)1/2

N̂ab
ϕ1

; N ca
ψ =

(

|Ica2 |
T

(2)
2

)1/2

N̂ ca
ψ ; N bc

ψ =

(

|Ibc3 |
T

(3)
2

)1/2

N̂ bc
ψ (4.18)

with the product N̂ab
ϕ1
N̂ ca
ψ N̂

bc
ψ being independent on the moduli, then the Yukawa coupling

becomes a holomorphic function of the moduli! This means that the three factors N̂ can in

general depend on the magnetizations |Ir|
T

(r)
2

in such a way, however, that this dependence is

cancelled when we take their product. But, in order that this could happen, it is required

that the normalization of the scalar and of its fermionic partner corresponding to the torus

T 2
r be not only a function of the magnetization on T 2

r , but also on the magnetization on

the other two tori. This seems to us unlikely, but cannot be excluded in principle. In the

following we assume that this does not happen, but it is clear that the Kähler metrics that

we will derive, depends on this assumption.

In the final part of this section we consider the Yukawa coupling involving the two

fermions of the hypermultiplet and a scalar living in the adjoint representation of the

gauge group.11 This coupling is obtained by compactifying the terms of ten dimensional

action given in eq. (2.13). In the following we restrict our analysis only to the first term

of this equation which gives the interaction of the two fermions ψ̄abα and ψbaβ living in the

bifundamental representation of the gauge group Ua(1)×Ub(1) with the massless scalar in

the “adjoint” representation of the second gauge group. Here, the indices α and β label

10For any other choice of signs we get either an equivalent realization of N = 1 supersymmetry or an

extended N = 4 supersymmetry that we do not consider here.
11We call it adjoint with an abuse of notation having in mind that the U(1) gauge group is extended to

a non-abelian group when some of the background values are equal to each other as discussed in section 2.
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the degeneracy of the lowest fermionic state as described at the end of appendix B. The

second term of eq. (2.13) gives the interaction of the two fermions with the scalar in the

“adjoint” of the group Ua(1). Such interaction term has a sign that is opposite to the first

term. This sign can be taken into account by multiplying the Yukawa coupling by a factor

σ which is equal to +1 [−1] if the fermion ψba is in the fundamental representation of the

gauge group Ub(1) [Ua(1)].

Inserting in the first term of eq. (2.13) the zero mode of the expansion in eq. (2.27)

and the massless fermions given in eq. (B.39) we get:

SδB3;α, β =

∫

d4x
√

G4ψ̄
ab
α

3
∑

r=1

[ϕar (Y r
α, β)

s + ϕ̄ar (Ȳ r
α, β)

s] γ5
(4)ψ

ba
β (4.19)

where we have taken the internal wave function of the scalar to be equal to 1 and used the

relation between the four-dimensional fields and ten-dimensional ones given in eq. (A.9).

The Yukawa coupling in the four-dimensional string frame is equal to:

(Y r
α, β)

s =
√

4π σ

√
α′

R

Nψα
Nψβ

2g2

3
∏

r=1

[

(2πR)2
∫

d2zr
√

G(zr , z̄r)

]

(ηbaα )†
[

1

2U
(r)
2

γz
r

(6)

]

ηbaβ (4.20)

with (Ȳ r
α, β)

s = ((Y r
β, α)

†)s. The factors depending on R and
√
α′ are a direct consequence

of the factors present in eq. (A.9).

Due to the peculiar structure of the six-dimensional Γ matrices, the only terms of the

previous expression, that are different from zero, are the ones with r = 3 and α 6= β. The

result is:

(Y 3
↑, ↓)

s = (Y 3
↓, ↑)

s = σNψ↓
Nψ↑

e−φ10

2
√

4π

3
∏

r=1

T
(r)
2

2
∏

r=1

[

1

(2U
(r)
2 |Iabr |)1/2

]

√

1

U
(3)
2 T

(3)
2

(4.21)

where we have used the relation between T2 and T2 given in eq. (A.7) together with the

expression of the Dirac-matrix given in eq. (B.27).

The Yukawa coupling in the Einstein frame is obtained by multiplying the previous

expression by the dilaton factor e3φ4 . Introducing, as for the case N = 1, the Kähler

potential K given in eq. (A.15) we get:

(Y 3
↑, ↓)

E = (Y 3
↓, ↑)

E = σNψ↓
Nψ↑

eK/2

4
√

4π

2
∏

r=1

(

T
(r)
2

|Iabr |

)1/2

. (4.22)

The previous coupling is not a holomorphic function of the moduli. However, normalizing

the fermions as follows:

Nψ↑
= Nψ↓

=

(

|Iab1 |
T

(1)
2

)1/2

=

(

|Iab2 |
T

(2)
2

)1/2

(4.23)

where the first relation in eq. (3.5) has been explicitly used, we restore also in this case the

holomorphicity of the super-potential.
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5 Fixing the Kähler metrics

In the previous section we have fixed the normalization of the four-dimensional fields by

requiring that the Yukawa couplings come from a holomorphic superpotential. We can now

go back to the Kähler metrics that we have determined in section 3 apart from an overall

normalization, and fix them uniquely using the value obtained from the Yukawa couplings.

Let us start from the chiral multiplet where the Kähler metric is given in eq. (3.4). Inserting

in it the normalization given in the first equation in (4.18) we get:

Zchiral
ab =

1

2s
1/4
2

3
∏

r=1

[

1

(2u
(r)
2 )1/2(t

(r)
2 )1/4

]

(

νab1

πνab2 ν
ab
3

)1/2

(5.1)

where eq. (4.13) has been used. Let us now examine the dependence on the magnetizations,

given by the last factor in the r.h.s. of the previous equation. The dependence of the Kähler

metric on the magnetizations has been computed by means of a pure string calculation in

refs. [3, 4] obtaining in our notations:

[

Γ(1 − νab1 )

Γ(νab1 )

Γ(νab2 )

Γ(1 − νab2 )

Γ(νab3 )

Γ(1 − νab3 )

]1/2

=⇒
(

νab1

νab2 ν
ab
3

)1/2

. (5.2)

This expression, in the limit of small magnetizations, coincides with our result in eq. (5.1)

for the part concerning the magnetizations, consistently with the fact that this is just the

limit that one should perform in going from the string to the field theory definition of ν.

In this limit, for positive values of ν, one has:

tan πνr =
|Ir|
T

(r)
2

=⇒ πνr =
|Ir|
T

(r)
2

(5.3)

which is realized for small values of νr. The expression for the twisted Kähler metric

obtained from considerations about holomorphicity within the instanton calculus [5–7]

contained a possible additional dependence on the magnetizations that we do not find in

our field theoretical procedure.

Turning to the Kähler metric of the hypermultiplet, given in eq. (3.10), we see that

the dependence on the magnetization cancels and we get:

Zhyper
i =

1

2
(

4u
(1)
2 u

(2)
2 t

(1)
2 t

(2)
2

)1/2
. (5.4)

In this case the dependence on the magnetization drops out in agreement with the well-

known result (see for instance eq. (2.45) of ref. [12]).

6 Conclusions and outlook

In this paper we have proposed a procedure for determining the Kähler metric for the

twisted open strings defined as the ones having their end-points attached to two D branes

– 15 –



J
H
E
P
0
3
(
2
0
0
9
)
0
2
9

with different magnetizations. Unlike ref. [8], where the kinetic terms are canonically nor-

malized and then the Kähler metrics appear in the Yukawa couplings, we keep for the

quadratic terms the normalization that comes naturally from the Kaluza-Klein reduction

apart from a normalization factor that we then determine requiring that the Yukawa cou-

plings correspond to a holomorphic superpotential. We find that these normalization fac-

tors depend only on the magnetization. This procedure yields the Kähler metrics proposed

in the literature [5–7] without the arbitrary factors that appeared in the previously men-

tioned proposals. In particular, our procedure allows us to correctly determine the Kähler

metric for the hypermultiplet that agrees with the expression obtained with other methods.

In deriving the previous results we have, however, made implicitly two assumptions.

The first one is that the normalization factor contains only the minimal number of factors

that make the superpotential holomorphic and the second one is that our reasonings are

based on the specific form of the scalar fields ϕr,± that we use (see eqs. (2.21) and (2.22)).

But why do we use these scalar fields? Before trying to answer this question, let us observe

that the introduction of the normalization factor allows us to actually rescale the field with

a quantity and at the same time rescale the normalization factor with the inverse quantity

without changing the Kähler metrics and the Yukawa couplings. In particular, this rescaling

factor can be a function of the moduli. This means that the presence of the normalization

factor does not allow us to determine the absolute normalization of the scalar field.

Having said this, let us find the relation of ϕr,− with the original ten-dimensional fields.

In the case of the adjoint scalars such relation is given in eq. (2.30). For the twisted fields,

starting from eq. (2.21) and then using the relation between the variables x1, x2 and z, z̄

given in appendix A, we get:

ϕr− =

√

√

√

√

2U
(r)
2

T (r)
2

ϕr z =

√

√

√

√

2U
(r)
2

T (r)
2

(

∂x2r+2

2πR ∂zr
W2r+2 +

∂x2r+3

2πR∂zr
W2r+3

)

=
i

√

2U
(r)
2 T (r)

2

(Ū (r)W2r+2 −W2r+3) (6.1)

where we have used eqs. (A.2) and the transformation rule of a covariant vector:12

Wzr =
∂xk

2πR∂zr
Wk . (6.2)

Unlike the adjoint scalar in eq. (2.30), the fundamental scalar in eq. (6.1) is not a holo-

morphic function of the fields for the presence of the non-holomorphic pre-factor. If we

want a holomorphic function we can incorporate the extra non-holomorphic factor in the

normalization factor fixing it in a unique way. This requirement eliminates the possibility

of rescaling both the scalar field and the normalization factor, as discussed above. This

unique rescaling leaves both the Kähler metric and the Yukawa couplings, determined

above, unchanged.

12The extra factor 2πR in eq. (6.1) is necessary for dimensional reasons (the x variables are dimensional,

while the z variables are dimensionless).
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The procedure outlined in this paper can be extended to more complicated and more re-

alistic compact manifolds and, if we restrict ourselves to toroidal compactifications, it would

be important to develop string techniques for fully reproducing the field theoretical results

in the zero slope limit and also for computing string corrections to the field theory behavior.
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A The torus T
2

In this appendix we summarize the properties of the torus T 2 and we list the combination

of the string moduli that enter in supergravity.

The torus T 2 can be equivalently described either by the “curved” dimensional coordi-

nates x1, x2 that are periodic with period 2πR going around the two one-cycles of the torus

x1 ≡ x1 + 2πR x2 ≡ x2 + 2πR (A.1)

or by the “flat” dimensionless coordinates z, z̄ given by:

z =
x1 + Ux2

2πR
z̄ =

x1 + Ūx2

2πR
. (A.2)

The dimensional parameter R is arbitrary and has been introduced to deal with dimen-

sionless z and z̄. We will see, however, that the physical quantities do not depend on R.

The metric of the torus in the two coordinate systems is equal to:

G
(x1,x2)
ij =

T2

U2

(

1 U1

U1 |U |2

)

; G
(z,z̄)
ij =

T2

2U2

(

0 1

1 0

)

. (A.3)

They imply

ds2 = G
(x1,x2)
ij dxidxj =

T2

U2
|dx1 + Udx2|2 = (2πR)2

T2

U2
dzdz̄ . (A.4)

The complex quantities U = U1 + iU2 and T = T1 + iT2 correspond, respectively, to the

complex and the Kähler structures of the torus T 2. The real part of the Kähler structure T1

is related to the the Kalb-Ramond field by T1 = −B12, while its imaginary part is related

to the volume of the torus. We use dimensionless moduli. They are given in terms of the

physical parameters of the torus, consisting of two radii R1 and R2 and an angle α, by the

following expressions:

U =
R2

R1
eiα ; T2 =

R1R2

R2
sinα . (A.5)

– 17 –



J
H
E
P
0
3
(
2
0
0
9
)
0
2
9

The area of the torus T 2 is given by:

A =

∫ 2πR

0
dx1

∫ 2πR

0
dx2
√

G(x1,x2) = (2π)2R1R2 sinα

= (2πR)2
∫

T 2

d2z
√

G(z,z̄) = (2πR)2T2 (A.6)

and is independent of R.

In string theory one usually introduces “curved” dimensional coordinates x̃1, x̃2 which

have periodicity 2π
√
α′ when translated along the two one-cycles of the torus.13 The

relation between these coordinates and the ones given in eq. (A.1) is x̃ = (
√
α′/R)x. In

terms of these coordinates the volume of the torus is measured in units of the string

length 2π
√
α′ rather then 2πR. This means that the string Kähler structure T2 is given by

eq. (A.5) with R substituted by
√
α′, i.e.

T2 =
R2

α′ T2 . (A.7)

The relation between the covariant fields defined in the x-coordinates with the correspond-

ing ones in the x̃-coordinates can be obtained from the general transformation of coordi-

nates rule of covariant fields:

C̃r =

(

∂xs

∂x̃r

)

Cs =
R√
α′Cr . (A.8)

It is also useful to give the relation between the four-dimensional field ϕ defined in eq. (2.30)

and the scalars written in the complex system of coordinates Cz. From its definition, given

in eq. (2.30), we can write:

ϕ = i
RŪ√
4πα′

(

2πR∂z

∂x1

)

Cz − i
R√
4πα′

(

2πR∂z

∂x2

)

Cz =
2U2R√
4πα′Cz (A.9)

where the extra factor 2π R is necessary for dimensional reasons, because the z’s, differently

from the x’s, are dimensionless coordinates.

We can introduce the following vierbein and its inverse:

eIi =
1

2

√

T2

U2

(

1 1

−i i

)

; i = z, z̄ ; eiI =

√

U2

T2

(

1 i

1 −i

)

(A.10)

such that

G
(z,z̄)
ij = eJiδJIe

I
j ≡ (et e)ij =

T2

2U2

(

0 1

1 0

)

. (A.11)

In the final part of this appendix we introduce the moduli fields that one should use in

the supergravity action. In string theory the moduli are the ten dimensional dilaton and

13For the sake of simplicity we could have introduced torus coordinates with the same periodicity R =
√

α′.

It is, however, useful to keep them different from each other to have a check on the formulas because the

physics is independent on their choice.
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the ones related to the complex and Kähler structure U = U1 + iU2 and T = T1 + iT2. In

supergravity the variables to use are instead the following:

s2 = e−φ10

3
∏

r=1

T
(r)
2 ; t

(r)
2 = e−φ10T

(r)
2 ; u2 = U2 ; e−φ4 = e−φ10

3
∏

r=1

(

T
(r)
2

)1/2
. (A.12)

The subindex 2 means that they are the imaginary part of a complex quantity whose real

part is given by suitable RR fields that are not needed here. The previous relations imply

the following:

s2
∏3
r=1 t

(r)
2

= e2φ10 ;
3
∏

r=1

T
(r)
2 =

s
3/2
2

(

∏3
r=1 t

(r)
2

)1/2
; e2φ4 = s

−1/2
2

(

3
∏

i=1

t
(i)
2

)−1/2

. (A.13)

The Kähler potential of the closed string moduli is given by:

K = − log s2 −
3
∑

r=1

[

log t
(r)
2 + log u

(r)
2

]

. (A.14)

It satisfies the following identity:

eK/2 =
e2φ4

∏3
r=1(U

r
2 )1/2

. (A.15)

B Solving the eigenvalue equations

Let us start analyzing the case of the torus T 2. In terms of the variables z, z̄ defined in the

appendix A the gauge covariant derivative is given by:

D̃z = ∂z − iBz ; D̃z̄ = ∂z̄ − iBz̄ (B.1)

where the background fields Bz and Bz̄ are given by:

Bz =
πIz̄

(U − Ū)
; Bz̄ = − πIz

(U − Ū)
=⇒ B = Bzdz +Bz̄dz̄ =

πI(z̄dz − zdz̄)

2iU2
. (B.2)

They imply (F ≡ dB):

[

−iD̃z,−iD̃z̄

]

= −πI
U2

≡ iFzz̄ . (B.3)

The expression for Fzz̄ can be obtained from the fact that the first Chern class must be an

integer I:
∫

F

2π
=

∫

Fzz̄dz ∧ dz̄ = I =⇒ Fzz̄ = − πI

iU2
. (B.4)

From the previous expression for Fzz̄ one can easily compute

2i < (Fr)
z
z >

ab= 2iG(r)zz̄ < (Fr)z̄z >
ab= −4iU

(r)
2

T (r)
2

(Fr)
ab
zz̄ =

4πIr

T (r)
2

(B.5)
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and

2i < (Fr)
z̄
z̄ >

ab= 2iG(r)z̄z < (Fr)zz̄ >
ab=

4iU
(r)
2

T (r)
2

(F abr )zz̄ = −4πIr

T (r)
2

(B.6)

where the metric Gr given in eq. (A.3).

We also introduce

Iab = Ia − Ib = −iU2

π
(F azz̄ − F bzz̄) . (B.7)

If one considers the quadratic terms in the action, there is no loss of generality in choosing

the magnetization on the D brane labeled with the index b to be zero. This allows us to

simplify the notation by writing Iab = Ia ≡ I. We perform this choice in sections 2 and 3

while we will reintroduce the indexes when considering the Yukawa couplings in section 4.

Using the metric for the torus T 2 given in appendix A one gets:14

D̃kD̃
k = D̃kG

kiD̃i =
(

D̃z D̃z̄

) 2U2

T2

(

0 1

1 0

)(

D̃z

D̃z̄

)

=
2U2

T2

{

D̃z, D̃z̄

}

. (B.8)

If I > 0 we can introduce the creation and annihilation operator:

− iD̃z ≡ −i
(

∂z −
πIz̄

2U2

)

=

√

πI

U2
a† ; −iD̃z̄ ≡ −i

(

∂z̄ +
πIz

2U2

)

=

√

πI

U2
a (B.9)

that satisfy the harmonic oscillator algebra:

[a, a†] = 1 . (B.10)

Using eqs. (B.9) in eq. (B.8) we get:

− D̃kD̃
k =

2πI

T2

(

aa† + a†a
)

=
2πI

T2

(

2a†a+ 1
)

≡ 2πI

T2
(2N + 1) . (B.11)

The ground state for the torus T 2 is degenerate and there are I independent solutions

given by:

φab,n
T 2 (z) = eπiIz

Imz
ImU Θ

[

2n
I

0

]

(Iz|IU) ; n = 0 . . . I − 1 (B.12)

which are determined by solving the equation

a φabT 2(z, z̄) ≡ D̃z̄φ
ab
T 2(z, z̄) = 0 (B.13)

with the following periodicity conditions to be satisfied in going around the two one-cycles

of the torus:

φab(z + 1, z̄ + 1) = ei χ1(z, z̄)φab(z, z̄) φab(z + U, z̄ + Ū) = ei χ2(z, z̄)φab(z, z̄) (B.14)

14In this equation and in the entire analysis of the torus T 2 the index k runs only on one torus and should

not be confused with the one used in eq. (2.15).
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where

χ1 =
πI

ImU
Im(z) ; χ2 =

πI

ImU
Im(Ū z) . (B.15)

Remember that we use the following definition of the Θ-function:

Θ

[

α

β

]

(z|U) =
∑

n

e2πi[ 1
2
(n+ α

2
)2U+(n+ α

2
)(z+ β

2
)]. (B.16)

If I < 0 the identification of Dz and Dz̄ with the creation and annihilation operators is

exchanged; i.e.:

− iD̃z =

√

π|I|
U2

a ; − iD̃z̄ =

√

π|I|
U2

a† . (B.17)

The operator in eq. (B.11) becomes:

− D̃kD̃
k =

2π|I|
T2

(

2a†a+ 1
)

≡ 2π|I|
T2

(2N + 1) . (B.18)

The wave functions of the (degenerate) ground state, are given by:

φab,n
T 2 = eπi|I|z̄

Imz̄
ImU Θ

[

−2n
I

0

]

(Iz̄|IŪ) ; n = 0 . . . |I| − 1 (B.19)

and are determined by requiring them to satisfy the following equation:

a φabT 2(z, z̄) ≡ D̃zφ
ab
T 2(z, z̄) = 0 (B.20)

and the periodicity conditions in eqs. (B.14). In particular, the structure of the phase

factor in eq. (B.19) is fixed by the Laplace equation (B.20), while the arguments of the

Theta function follow from the boundary conditions in eqs. (B.14) where we have used that

eq. (B.15) can be equivalently written as

χ1 =
πI

ImŪ
Im(z̄) ; χ2 =

πI

ImŪ
Im(U z̄) . (B.21)

Eqs. (B.11) and (B.18) can be immediately generalized to the torus T 2 × T 2 × T 2 getting:

− D̃kD̃
k =⇒

3
∑

r=1

2U
(r)
2

T (r)
2

{

D̃zr , D̃z̄r

}

=
3
∑

r=1

2π|Ir|
T (r)

2

(2Nr + 1) (B.22)

where the arrow indicates the change from the dimensional variables x1, x2 to the variables

z, z̄. In conclusion, eq. (2.15) (in dimensionless compact coordinates) can be written as:

− D̃kD̃
kφabn = m2

nφ
ab
n =⇒

3
∑

s=1

2π|Is|
T (s)

2

(2Ns + 1)φabn = m̂2
nφ

ab
n ; m2

n =
m̂2
n

(2πR)2
. (B.23)

We go on in considering the eigenvalue equation for the fermions given in eq. (2.15). In

particular, we restrict ourselves to the case T 2×T 2×T 2 and decompose the six-dimensional
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Dirac algebra in the product of three two dimensional representations according to the

relation:15

γ4
(6) = γ1

(1) ⊗ σ3 ⊗ σ3 ; γ5
(6) = γ2

(1) ⊗ σ3 ⊗ σ3

γ6
(6) = I ⊗ γ1

(2) ⊗ σ3 ; γ7
(6) = I ⊗ γ2

(2) ⊗ σ3

γ8
(6) = I ⊗ I ⊗ γ1

(3) ; γ9
(6) = I ⊗ I ⊗ γ2

(3) (B.24)

with:

γ2
(r) ≡ σ2 =

(

0 −i
i 0

)

; γ1
(r) ≡ σ1 =

(

0 1

1 0

)

. (B.25)

Correspondingly, the ten dimensional Majorana-Weyl spinors are the product of a four-

dimensional spinor and three two-dimensional spinors η1 ⊗ η2 ⊗ η3. The ten-dimensional

Weyl condition imposes that these latter have to be Weyl spinors:

iγ1
(r) γ

2
(r)ηr = ±ηr . (B.26)

The Dirac matrices, previously introduced, satisfy the Clifford algebra with a flat metric.

On the torus T 2, in the complex coordinates, the metric is given in the second equation

in (A.3), and therefore the flat Dirac matrices has to be multiplied by a suitable vierbein:

i.e. γi = ei Iγ
I that is given in eq. (A.10). From it we get the Dirac matrices with a

“curved” index:

γz(r) = ezIγ
I
(r) =

√

√

√

√

U
(r)
2

T (r)
2

(

0 2

0 0

)

; γz̄(r) = ez̄Iγ
I
(r) =

√

√

√

√

U
(r)
2

T (r)
2

(

0 0

2 0

)

(B.27)

and therefore we can write:

γz
r

(6) = I
⊗(r−1) ⊗ γz(r) ⊗ (σ3)⊗(3−r) ; γz̄

r

(6) = I
⊗(r−1) ⊗ γz̄(r) ⊗ (σ3)⊗(3−r) (B.28)

where V ⊗n = V ⊗ · · · ⊗ V with n V -factors.

Having defined the Dirac matrices, we go back to the eigenvalue equation in eq. (2.15)

and we square it, getting:
(

−D̃iD̃
i
I − 1

2
[γi, γj ]D̃iD̃j

)

ηn = λ2
nηn . (B.29)

For a single torus the second term in the l.h.s. of the previous equation is given by:

1

2
[γi, γj ]D̃iD̃j =

1

2(2πR)2
[γz, γz̄][D̃z , D̃z̄] =

1

(2πR)2
2πI

T2

(

1 0

0 −1

)

(B.30)

where eq. (B.3) has been used. Eqs. (B.30) and (B.11) we can put the fermionic eigenvalue

equation in the following form:

1

(2πR)2

[

2π
3
∑

r=1

(2Nr + 1)
|Ir|
T

(r)
2

I ⊗ I ⊗ I − 2πI1

T
(1)
2

σ3 ⊗ I ⊗ I − 2πI2

T
(2)
2

I ⊗ σ3 ⊗ I

−2πI3

T
(3)
2

I ⊗ I ⊗ σ3

]

η1
n ⊗ η2

n ⊗ η3
n = λ2

nη
1
n ⊗ η2

n ⊗ η3
n (B.31)

15See ref. [13].
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where we have decomposed ηn = η1
n⊗η2

n⊗η3
n. This equation shows that, for arbitrary signs

of Ir (r = 1, 2, 3), there is always a unique zero mode that is a chiral fermion. In particular,

if I1,2,3 are all positive, then all three wave functions η(1,2,3) will have positive chirality:

σ3η = η. Since the original ten-dimensional fermion is a Weyl fermion with chirality χ10,

the four-dimensional chirality χ4 will be equal to χ4 = χ10χ1χ2χ3 where χr (r = 1, 2, 3) is

the chirality on the r-th torus.

Since the zero mode eigenfunction on T 2×T 2×T 2 is the product of the zero mode eigen-

functions on each torus T 2, we will limit ourselves to the Dirac equation on the torus T 2:

(

γz(r)D̃zr + γz̄(r)D̃z̄r

)

ηabr (zr, z̄r) = 0 (B.32)

where we have omitted the index 0 to simplify the notation, and it is satisfied when

(

γz(r)D̃zr + γz̄(r)D̃z̄r

)

ηabr (zz , z̄r) = 2

√

U2

T2

(

0 D̃zr

D̃z̄r 0

)(

ηabr,+
ηabr,−

)

= 0 (B.33)

with D̃ given in eq. (B.9). The Weyl condition written in eq. (B.26) imposes that the

spinor has to be of the form:

ηr,+ =

(

ηabr,+
0

)

; ηr,− =

(

0

ηabr,−

)

(B.34)

with η+ and η− spinors with opposite chirality. By using again eq. (B.9), we have that the

solution of eq. (B.33) imposes:

a(r) η
ab
r,+ ≡ −iD̃z̄r ηabr,+ = 0 Ir > 0 (B.35)

while for Ir < 0, as previously discussed, the role of creation and annihilation operators is

exchanged and we have:

a(r) η
ab
r,− ≡ −iD̃zr ηabr,− = 0 Ir < 0 . (B.36)

The previous equations coincide with those for the bosonic degrees of freedom (eqs. (B.13)

and (B.20)) and thus the solutions exactly coincide with the ones in eq. (2.25)

ηab,nr

r,+ = φab,nr

r,+ ; ηab,nr

r,− = φab,nr

r,− (B.37)

with ηabr,− = (ηbar,+)†. In particular, if I > 0 (I < 0), then the spinor has positive (negative)

chirality because the spinor with the opposite chirality has a wave-function that diverges

for large values of Imz.

In the last part of this appendix we extend the previous analysis to the case of the

fermions of the N = 2 hypermultiplet. Such fermions appear in our model when one of

the three tori, for example the third torus, is not magnetized, i.e. I3 = 0. In this case,

the equations of motion (B.32) for the lowest massless components of the mode expansion,

are along the first two tori analogously to the N = 1 case, while on the third torus the

covariant derivative becomes the normal derivative. Also the boundary conditions are
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unchanged on the first two tori, while on the third one they become just the periodicity

conditions of the wave-function when translated along the two one-cycles of T 2. These

simple considerations allow us to immediately write down the compact wave functions of

the massless hypermultiplet fermions. They coincide, along the first two tori, with the ones

of the chiral fermions written for example in eq. (B.34), while are constant spinors along

the third torus. In particular, the condition (B.26) implies that the constant spinor has

to be a Weyl spinor. Depending on its chirality, we have two different solutions for the

internal wave-function which have opposite six-dimensional chirality:

ηα = η1,± ⊗ η2,± ⊗ ǫα α = {↑, ↓} ; ǫ↑ =

(

1

0

)

ǫ↓ =

(

0

1

)

(B.38)

where we have suppressed the index labeling the mode expansion and the upper and lower

signs can be independently chosen. The lowest massless fermionic state is now degenerate

and, having both the ten-dimensional fermion and the internal wave-function a definite

chirality, we have two four-dimensional fermions with opposite chirality. as expected. The

full ten-dimensional wave-function can be written as follows:

Ψα(x, y) = Nψα
ψα(x

µ) ⊗ ηβ(y
i) α, β = {↑, ↓} . (B.39)

C Evaluating the Yukawa couplings

In this appendix we give some details of the evaluation of the Yukawa couplings discussed

in section 4 for the chiral multiplet. In particular, we will show how eqs. (4.5), (4.6)

and (4.7) can be obtained starting from eq. (4.1) and considering only the zero modes. Let

us concentrate our attention on the case in which the massless scalar is along the first torus

(namely the condition in eq. (4.2)is satisfied). Eq. (4.1) becomes

SΦ
3 =

1

2g2

√

√

√

√

T (1)
2

2U
(1)
2

∫

d4x
√

G4

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

×
[

ψ̄ca γ5
(4)ϕ

ab
1,− ψ

bc ⊗ (ηac)†γz
1

(6)φ
ab
1,+φ

ab
2,sign Iab

2
φab

3,sign Iab
3
ηbc

+ ψ̄ca γ5
(4)ϕ

ab
1,+ ψ

bc ⊗ (ηac)†γz̄
1

(6)φ
ab
1,−φ

ab
2,sign Iab

2
φab

3,sign Iab
3
ηbc

−ψ̄ca γ5
(4)ϕ

bc
1,− ψ

ab ⊗ (ηac)†γz
1

(6)φ
bc
1,+φ

bc
2,sign Ibc

2
φbc

3,sign Ibc
3
ηab

− ψ̄ca γ5
(4)ϕ

bc
1,+ ψ

ab ⊗ (ηac)†γz̄
1

(6)φ
bc
1,−φ

bc
2,sign Ibc

2
φbc

3,sign Ibc
3
ηab
]

(C.1)

where we have omitted the index 0 to simplify the notation and inserted the indexes a, b, c

in order to dsitinguish the different brane magnetizations. According to the choice of the

Chern classes signs, only one of the four terms in eq. (C.1) corresponds to the Yukawa

coupling of the massless boson with the two fermions. Thus one has to compute one of the
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following integrals over the compact space

1

2g2

√

√

√

√

T (1)
2

2U
(1)
2

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

×φab1,+(ηac †1 γz1η
bc
1 ) ⊗ φab

2,sign Iab
2

(ηac †2 σ3η
bc
2 ) ⊗ φab

3,sign Iab
3

(ηac †3 σ3η
bc
3 )

=
1√
2g2

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

× (ηca1,− φ
ab
1,+ η

bc
1,−)(sign Iac2 η

ca
2,∓ φ

ab
2,sign Iab

2
ηbc2,±)(sign Iac3 η

ca
3,∓ φ

ab
3,sign Iab

3
ηbc3,±) (C.2)

for the case Iab1 > 0 and Ibc1 , I
ca
1 < 0,

1

2g2

√

√

√

√

T (1)
2

2U
(1)
2

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

×φab1,−(ηac †1 γz̄1η
bc
1 ) ⊗ φab

2,sign Iab
2

(ηac †2 σ3η
bc
2 ) ⊗ φab

3,sign Iab
3

(ηac †3 σ3η
bc
3 )

=
1√
2g2

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

× (ηca1,+ φ
ab
1,− η

bc
1,+)(sign Iac2 η

ca
2,∓ φ

ab
2,sign Iab

2
ηbc2,±)(sign Iac3 η

ca
3,∓ φ

ab
3,sign Iab

3
ηbc3,±) (C.3)

for the case Iab1 < 0 and Ibc1 , I
ca
1 > 0,

− 1√
2g2

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

× (ηca1,− φ
bc
1,+ η

ab
1,−)(sign Iac2 ηca2,∓ φ

bc
2,sign Ibc

2
ηab2,±)(sign Iac3 η

ca
3,∓ φ

bc
3,sign Ibc

3
ηab3,±) (C.4)

for Ibc1 > 0 and Iab1 , I
ca
1 < 0, and

− 1√
2g2

3
∏

r=1

[

(2πR)2
∫

d2zr
√
Gr
]

×(ηca1,+ φ
bc
1,− η

ab
1,+)(sign Iac2 ηca2,∓ φ

bc
2,sign Ibc

2
ηab2,±)(sign Iac3 η

ca
3,∓ φ

bc
3,sign Ibc

3
ηab3,±) (C.5)

for Ibc1 < 0 and Iab1 , I
ca
1 > 0. The cases in which Ica1 > 0 and Iab1 , I

bc
1 < 0 and the one in

which Ica1 < 0 and Iab1 , I
bc
1 > 0 can be obtained from eqs. (C.4) and (C.5) respectively, by

changing the indices ca with bc. Notice that, in order to get a non-vanishing expression,

the two fermionic components of the internal wave function along the second and the third

torus need to have opposite chiralites.

With the choice of the sign for the Chern classes along the first torus given in eq. (4.4),

the internal wave function associated with the bosonic zero mode solution is the first one in

eq. (2.25), and thus only the first term in eq. (C.1) contributes. In this case to determine

the Yukawa coupling one has to evaluate the integral in eq. (C.2).

in order to write a general expression of the Yukawa couplings which holds for each of

the previous choices of the Chern classes signs, one can introduce a factor σ =
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sign(Ibc1 I
ca
1 I

ac
2 Iac3 ) = ±1 which encodes the signs sign(Iac2 ) and sign(Iac3 ), relative to the

second and the third torus and the overall sign of the coupling which is + in the case of

eqs. (C.2)–(C.3) and − in the case of eqs. (C.4)–(C.5).

Substituting eqs. (2.25)) in the previous expression, we end up with the following

product of overlap integrals of three Θ-functions

Y =
1

g2
σ

3
∏

r=1

∫

T 2
r

d2zr
√
Grφab,lr

sign Iab
r
φca,nr

sign Ica
r
φbc,mr

sign Ibc
r
. (C.6)

Let us first restrict ourselves to the case of the first torus T 2. In order to calculate the

previous integral one has to use the addition formula for the Θ-functions [14]

Θ

[

2a
n1

0

]

(z1|n1Ω)Θ

[

2b
n2

0

]

(z2|n2Ω) =
∑

d∈Z(n1+n2)

Θ

[

2(n1d+a+b)
n1+n2

0

]

(z1 + z2|(n1 + n2)Ω) (C.7)

×Θ

[

2(n1n2d+n2a−n1b)
n1n2(n1+n2)

0

]

(n2z1 − n1z2|n1n2(n1 + n2)Ω)

where Z(n1+n2) indicates the set of the integer numbers modulo (n1 +n2). In our example,

being n1 ≡ Ica, n2 ≡ Ibc < 0 and Iab > 0 with Ibc + Ica + Iab = 0, we have

φca,n− (z̄)φbc,m− (z̄) = eiπI
abz̄ Imz̄

ImU

∑

d∈Z
Ica+Ibc

Θ

[

2(dIca−n−m)
Iba

0

]

(Ibaz̄|IbaŪ)

×Θ

[

2(dIbcIca−nIbc+mIca)
IcaIbcIba

0

]

(0|IbcIcaIbaŪ). (C.8)

Let us focus on the terms that depend on z and z̄ and leave for a moment aside the last

term in eq. (C.8). These terms in fact contribute to the integral in eq. (C.6) on the first

torus T 2. For each value of the index d in the sum in eq. (C.8), one has to evaluate the

following integral:

∫

d2zeiπI
abz̄ Imz̄

ImU Θ

[

2(dIac+m+n)
Iab

0

]

(Ibaz̄|IbaŪ)eiπI
abz Imz

ImU Θ

[

2l
Iab

0

]

(Iabz|IabU) . (C.9)

By defining:

z ≡ x+ Uy ; 0 ≤ x ≤ 1 ; 0 ≤ y ≤ 1 ; U ≡ U1 + iU2 (C.10)

the previous integral becomes:

T2

∫ 1

0
dx

∫ 1

0
dyeiπI

ab(U−Ū)y2
∞
∑

q,q′=−∞
e
iπIab

»

“

q′+ l

Iab

”2
U−

“

q+ dIac+m+n

Iab

”2
Ū

–

×e2πiI
ab

h“

q′+ l

Iab

”

−
“

q+ dIac+m+n

Iab

”i

x
e
2iπIab

h“

q′+ l

Iab

”

U−
“

q+ dIac+m+n

Iab

”

Ū
i

y
. (C.11)
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The integral over x can be easily performed and, in order to get a non-zero result, one has

to impose the following relation:

q +
dIac +m+ n

Iab
= q′ +

l

Iab
. (C.12)

The integral over y can be rewritten as follows:

∫ 1

0
dye−2πIabU2y2

∑

q′

e
−2πIab

“

q′+ l

Iab

”2
U2e

−4πIab
“

q′+ l

Iab

”

U2y =

∫ 1

0
dy
∑

q′

e
−2πIabU2

“

y+q′+ l

Iab

”2

.

In conclusion, eq. (C.11) is equal to:

T2

∫ 1

0
du

∞
∑

q′=−∞
e
−2πIabU2

“

u+q′+ l

Iab

”2

= T2

∫ ∞

−∞
due

−2πIabU2

“

u+ l

Iab

”2

=
T2

(2IabU2)1/2
(C.13)

where we have used the identity:

∫ 1

0
du

∞
∑

n=−∞
F (n+ u) =

∫ ∞

−∞
duF (u) (C.14)

which trivially follows from:

∫ 1

0
du

∞
∑

n=−∞
F (n+ u) = lim

A→∞

A
∑

n=−A

∫ n+1

n
dxF (x) = lim

A→∞

∫ A

−A
dxF (x) . (C.15)

Finally, one gets the following result for the integral in eq. (C.9):

∫

d2zeiπI
abz̄ Imz̄

ImU Θ

[

2(dIac+m+n)
l

0

]

(Ibaz̄|IbaŪ)eiπI
abz Imz

ImU Θ

[

2l
Iab

0

]

(Iabz̄|IabŪ)

=
T2

(2IabU2)1/2
δdIac+m+n;l . (C.16)

Here the δ-function comes from the integration over x, that gives a non-vanishing result

only if

dIac +m+ n− l = kIab (C.17)

which can be equivalently written as

dIac +m+ n− l = 0 (C.18)

using that the integer l is defined modulus Iab. On the other hand, as one can see from

eq. (C.8), d is an integer modulus Iba. Therefore the result on the integration on the first

torus T 2 is non vanishing only if, given the integers m,n, l, a value of d in the interval

0 ≤ d ≤ Iab − 1 can be found such that the quantity in eq. (C.18) is an integer. Then,

including the constant term in z that appears in the second line of eq. (C.8) and assuming
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that there is a value of d such that the quantity in eq. (C.18) is an integer, one gets the

contribution to the Yukawa coupling coming from the first torus T 2:

Y =
σ

g2

T2

(2IabU2)1/2
Θ

[

2m
IcaIbc − 2l

IcaIba

0

]

(0|IbcIcaIbaŪ) . (C.19)

The charactheristc of the Θ function can be written in a more general way, which is valid

for each value of the Chern classess, as follows [8]:

2m

IcaIbc
− 2l

IcaIba
=

2

Ica

(

m

Ibc
+

l

Iab

)

=
2

Ica

(

m′Iab

Ibc
+
l′Ibc

Iab

)

= −2

{

m′ + l′

Ica
+
m′

Ibc
+

l′

Iab

}

= −2

{

n′

Ica
+
m′

Ibc
+

l′

Iab

}

(C.20)

where we have made a ridefinition of the indicesm, l → m′, l′ which are still defined modulus

Ibc and modulus Iab respectively. Such a redefinition is allowed for (Ibc, Iab, Ica) relative

prime. Moreover, we have introduced n′ = m′ + l′ which is defined modulus Ica. Then

substituting eq. (C.20) in Eq (C.19) one gets

Y =
σ

g2

T2

(2IabU2)1/2
Θ

[

2
(

n′

Ica + m′

Ibc + l′

Iab

)

0

]

(0|IbcIcaIbaŪ) (C.21)

where we have omitted the minus sign in the characteristic of the Θ-function and used

the property

Θ

[

−a
0

]

(0|t) = Θ

[

a

0

]

(0|t) .

In order to generalize the previous result to the case of the torus T 2 ×T 2 ×T 2 (always

performing the choice in eq. (4.4)), we notice from eq. (C.2) that the following integral has

to be computed both along the second and the third torus:
∫

T 2
r

d2zr
√
Grφcar,∓ φ

ab
r,sign Iabφ

bc
r,± . (C.22)

One has to apply again the addition formula (C.8) to φabr and φcar if sign(Iabr I
ca
r ) > 0 or to

φabr and φbcr if sign(Iabr I
bc
r ) > 0. Following the same calculations done in eqs. (C.8)–(C.13)

one ends with a normalization factor

T
(r)
2

(2|Ibcr |U (r)
2 )1/2

→ for sign(Iabr I
ca
r ) > 0

T
(r)
2

(2|Icar |U (r)
2 )1/2

→ for sign(Iabr I
bc
r ) > 0 . (C.23)

Notice that with a choice different from the one in (4.4), for instance Iab1 , I
ca
1 < 0 and

Ibc1 > 0), one should start from eq. (C.4) rather than eq. (C.2) and thus the integral to

compute along the second and the third torus would be
∫

T 2
r

d2zr
√
Grφcar,∓ φ

bc
r,sign Ibcφ

ab
r,± (C.24)
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and, instead of eq. (C.23), one would find:

T
(r)
2

(2|Iabr |U (r)
2 )1/2

→ for sign(Ibcr I
ca
r ) > 0

T
(r)
2

(2|Icar |U (r)
2 )1/2

→ for sign(Iabr I
bc
r ) > 0 . (C.25)

Defining

χabr = (1 + sign(Ibcr I
ca
r ))/2

χbcr = (1 + sign(Iabr I
ca
r ))/2

χcar = (1 + sign(Ibcr I
ab
r ))/2 (C.26)

one can write the two previous results in a unified way as

T
(r)
2

(

2U
(r)
2 |Ibcr |χbc

r |Iabr |χab
r |Icar |χca

r

)1/2
(C.27)

for all the three tori.

D Supersymmetry transformations

The action of the ten-dimensional N = 1 super Yang-Mills, written in eq. (2.1), is invariant

under the global supersymmetric variations [15]:

δAM =
i

2
ǭΓM λ ; δλ = −1

4
ΓMN FMN ǫ (D.1)

where ǫ is a ten-dimensional constant spinor. Starting from the ten dimensional supersym-

metry transformations and performing the Kaluza-Klein reduction we can determine the

four-dimensional supersymmetries which are preserved in our flux compactification. This

analysis can be carried in both the twisted and untwisted sectors. In the following we re-

strict our attention only to the twisted sector. In particular, by implementing in eq. (D.1)

the decompositions written in eq. (2.4), restricting our analysis only to the massless fields

in the bifundamental representation of the gauge group U(1)a ×U(1)b, using eq. (2.6) and

the mode expansions given in eq. (2.14), we can write:

Nϕ1 δ[ϕ
ab
z1(x) ⊗ φab0 (y)] = i

Nψ

2
ǭ4γ

5
(4)ψ

ab(x) ⊗Gz1z̄1ǫ
†
1γ
z̄1ηab1 ⊗ ǫ†2 I η2 ⊗ ǫ3 I ηab. (D.2)

Here, N1 and Nψ are the normalization factors that we have introduced in order to have

four dimensional actions with the correct holomorphic properties, as extensively discussed

in this paper.

Eq. (D.2) has been obtained by decomposing the ten-dimensional spinor ǫ as a product

of a four-dimensional spinor and three two-dimensional ones as follows:

ǫ = ǫ(4) ⊗
(

ǫ+1
ǫ−1

)

⊗
(

ǫ+2
ǫ−2

)

⊗
(

ǫ+3
ǫ−3

)

(D.3)
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in complete analogy with what we have done for the fermionic field.

The scalar involved in eq. (D.2) is massless when the constraint written in eq. (2.20) is

satisfied for r = 1 and with Iab1 > 0. In the following we assume that both these conditions

are satisfied. This means that the internal total wave-function of the scalar is:

φab0 = φab; n
1

1,+

3
∏

r=2

φab, n
r

r, sign(Iab
r )

(D.4)

where the wave-functions for each torus are given in eq. (2.25). Analogously, the internal

two-dimensional spinors ηr (r=1,2,3), which come from the decomposition of the six dimen-

sional spinor η, have, according to the eq. (B.34), positive chirality on the first torus and

positive or negative chirality on the other two tori, depending on the sign of Iabr for r = 2, 3.

These considerations allow us to write the susy transformation, in the following way:

Nϕ1δ[ϕ
ab
z1(x) ⊗ φab0 (y)] = i

Nψ

2

√

√

√

√

T (1)
2

U
(1)
2

ǭ4γ
5
(4)ψ

ab(x) (ǫ−1 ηab;n
1

1,+ ) (ǫ
sign(Iab

2 )
2 ηab, n

2

2, sign(Iab
2 )

)

×(ǫ
sign(Iab

3 )
3 ηab, n

3

3,sign(Iab
3 )

) (D.5)

where the γ-matrix written in eq. (B.27) has been used. This equation shows that, in order

to have a non-vanishing expression, the constant two-dimensional spinors have to be taken

equal to: ǫ−1 = 1, ǫ
sign(Iab)
2, 3 = 1 with all the other components being zero. With this choice

and remembering the relation between the bosonic and fermionic wave function, written

in equation (B.37), we have:

φab0 = ηab; n
1

1,+ ηab; n
2

2, sign(Iab
2 )

ηab; n
3

3,sign(Iab
3 )

(D.6)

where now the η’s are the non-zero components of the chiral two-dimensional spinor. Intro-

ducing the scalar field ϕ1 and the relation Nϕ1 = Nψ/
√

2π, both already defined in section

3, we can write the four-dimensional supersymmetric variation for the twisted fields as

follows:

δϕab1 =
i

2
ǭ4γ

5
(4)ψ

ab(x) (D.7)

which explicitly shows that the supersymmetric partner of the fermion ψ is the field ϕ1.
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